This website requires JavaScript.
DOI: 10.1101/2022.12.27.522022

ISG15-modification of the Arp2/3 complex restricts pathogen spread

Y.Zhang B. M. Ripley W. Ouyang ...+16 L. Radoshevich
摘要
The ubiquitin-like protein, ISG15, can act as a cytokine or can covalently modify host and pathogen-derived proteins. The consequences of ISG15 modification on substrate fate remain unknown. Here we reveal that ISGylation of the Arp2/3 complex slows actin filament formation and stabilizes Arp2/3 dependent structures including cortical actin and lamella. When properly controlled, this serves as an antibacterial and antiviral host defense strategy to directly restrict actin-mediated pathogen spread. However, Listeria monocytogenes takes advantage in models of dysregulated ISGylation, leading to increased mortality due to augmented spread. The underlying molecular mechanism responsible for the ISG15-dependent impact on actin-based motility is due to failed bacterial separation after division. This promotes spread by enabling the formation of multi-headed bacterial bazookas with stabilized comet tails that can disseminate deeper into tissues. A bacterial mutant that cannot recruit Arp2/3 or a non-ISGylatable mutant of Arp3 is sufficient to rescue slowed comet tail speed and restrict spread. Importantly, ISG15-deficient neonatal mice have aberrant epidermal epithelia characterized by keratinocytes with diffuse cortical actin, which could underlie observed defects in wound healing in human patients who lack ISG15. Ultimately, our discovery links host innate immune responses to cytoskeletal dynamics with therapeutic implications for viral infection and metastasis.
展开全部

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答