This website requires JavaScript.

A Level-Depth Correspondence between Verlinde Rings and Subfactors

Jun Yang
Dec 2022
摘要
We establish a correspondence between the levels of Verlinde rings and thedepths of subfactors. Given the $l$-level Verlinde ring $R_l(G)$ of a simplecompact Lie group $G$, the tensor products of fundamental representations giveus the inclusion of a pair of $\text{II}_1$ factors $N\subset M$. For the depth$d$ of $N\subset M$, we first prove $d=l$ for type $A_n,C_n$ and $B_2$. Moregenerally, the depth $d$ is shown to satisfy $\beta\cdot l\leq d\leq l$ with$\beta\in (0,1)$, where $\beta$ is uniquely determined by the simple type of$G$. We also show that the simple $N$-$N$-bimodules contained in $L^2(M)$generate the Verlinde ring $R_l(G)$ as its fusion category.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答