This website requires JavaScript.

A new estimate for homogeneous fractional integral operators on the weighted Morrey space $L^{p,\kappa}$ when $\alpha p=(1-\kappa)n$

Jingliang DuHua Wang
Dec 2022
摘要
For any $0<\alpha<n$, the homogeneous fractional integral operator$T_{\Omega,\alpha}$ is defined by \begin{equation*}T_{\Omega,\alpha}f(x)=\int_{\mathbbR^n}\frac{\Omega(x-y)}{|x-y|^{n-\alpha}}f(y)\,dy. \end{equation*} In thispaper, we prove that if $\Omega$ satisfies certain Dini smoothness conditionson $\mathbf{S}^{n-1}$, then $T_{\Omega,\alpha}$ is bounded from$L^{p,\kappa}(w^p,w^q)$ (weighted Morrey space) to $\mathrm{BMO}(\mathbb R^n)$.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答