This website requires JavaScript.

On invariant measures of "satellite" infinitely renormalizable quadratic polynomials

Genadi LevinFeliks Przytycki
Dec 2022
摘要
Let f(z)=z^2+c be an infinitely renormalizable quadratic polynomial andJ_\infty be the intersection of forward orbits of "small" Julia sets of itssimple renormalizations. We prove that if f admits an infinite sequence ofsatellite renormalizations, then every invariant measure of f: J_\infty\toJ_\infty is supported on the postcritical set and has zero Lyapunov exponent.Coupled with [G. Levin, F. Przytycki, W. Shen, The Lyapunov exponent ofholomorphic maps. Invent. Math. 205 (2016), 363-382], this implies that theLyapunov exponent of such f at c is equal to zero, which answers partly aquestion posed by Weixiao Shen.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答