This website requires JavaScript.

P$\wp$N functions, complete mappings and quasigroup difference sets

Nurdagul AnbarTekgul KalyciWilfried MeidlConstanza RieraPantelimon Stanica
Dec 2022
摘要
We investigate pairs of permutations $F,G$ of $\mathbb{F}_{p^n}$ such that$F(x+a)-G(x)$ is a permutation for every $a\in\mathbb{F}_{p^n}$. We show thatnecessarily $G(x) = \wp(F(x))$ for some complete mapping $-\wp$ of$\mathbb{F}_{p^n}$, and call the permutation $F$ a perfect $\wp$ nonlinear(P$\wp$N) function. If $\wp(x) = cx$, then $F$ is a PcN function, which havebeen considered in the literature, lately. With a binary operation on$\mathbb{F}_{p^n}\times\mathbb{F}_{p^n}$ involving $\wp$, we obtain aquasigroup, and show that the graph of a P$\wp$N function $F$ is a differenceset in the respective quasigroup. We further point to variants of symmetricdesigns obtained from such quasigroup difference sets. Finally, we analyze anequivalence (naturally defined via the automorphism group of the respectivequasigroup) for P$\wp$N functions, respectively, the difference sets in thecorresponding quasigroup.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答