This website requires JavaScript.

Unitary paradox of cosmological perturbations

Ngo Phuc Duc Loc
Dec 2022
摘要
If we interpret the Bekenstein-Hawking entropy of the Hubble horizon asthermodynamic entropy, then the entanglement entropy of the superhorizon modesof curvature perturbation entangled with the subhorizon modes will exceed theBekenstein-Hawking bound at some point; we call this the unitary paradox ofcosmological perturbations by analogy with black hole. In order to avoid afine-tuned problem, the paradox must occur during the inflationary era at thecritical time $t_c = \ln(3\sqrt{\pi}/\sqrt{2} \epsilon_H H_{inf})/2H_{inf}$ (inPlanck units), where $\epsilon_H$ is the first Hubble slow-roll parameter and$H_{inf}$ is the Hubble rate during inflation. If we instead accept thefine-tuned problem, then the paradox will occur during the darkenergy-dominated era at the critical time$t_c'=\ln(3\sqrt{\pi}H_{inf}/\sqrt{2}fe^{2N}H_\Lambda^2)/2H_\Lambda$, where$H_\Lambda$ is the Hubble rate dominated by dark energy, $N$ is the number ofe-folds, and $f$ is a purification factor that takes the range$0<f<3\sqrt{\pi}H_{inf}/\sqrt{2}e^{2N}H_\Lambda^2$.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答