This website requires JavaScript.

Planar Tur\'{a}n number of disjoint union of $C_3$ and $C_4$

Ping Li
Dec 2022
摘要
The {\em planar Tur\'{a}n number} of $H$, denoted by $ex_{\mathcal{P}}(n,H)$,is the maximum number of edges in an $H$-free planar graph. The planarTur\'{a}n number of $k\geq 3$ vertex-disjoint union of cycles is a trivialvalue $3n-6$. Lan, Shi and Song determine the exact value of$ex_{\mathcal{P}}(n,2C_3)$. We continue to study planar Tur\'{a}n number ofvertex-disjoint union of cycles and obtain the exact value of$ex_{\mathcal{P}}(n,H)$, where $H$ is vertex-disjoint union of $C_3$ and $C_4$.The extremal graphs are also characterized. For $k\geq 4$, we improve the lowerbound of $ex_{\mathcal{P}}(n,2C_k)$.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答