This website requires JavaScript.

On the Complexity of Generalized Discrete Logarithm Problem

Cem M UnsalRasit Onur Topaloglu
Dec 2022
摘要
Generalized Discrete Logarithm Problem (GDLP) is an extension of the DiscreteLogarithm Problem where the goal is to find $x\in\mathbb{Z}_s$ such $g^x\mods=y$ for a given $g,y\in\mathbb{Z}_s$. Generalized discrete logarithm issimilar but instead of a single base element, uses a number of base elementswhich does not necessarily commute with each other. In this paper, we provethat GDLP is NP-hard for symmetric groups. Furthermore, we prove that GDLPremains NP-hard even when the base elements are permutations of at most 3elements. Lastly, we discuss the implications and possible implications of ourproofs in classical and quantum complexity theory.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答