This website requires JavaScript.

On a class of special Euler-Lagrange equations

Baisheng Yan
Dec 2022
摘要
We make some remarks on the Euler-Lagrange equation of energy functional$I(u)=\int_\Omega f(\det Du)\,dx,$ where $f\in C^1(\R).$ For certain weaksolutions $u$ we show that the function $f'(\det Du)$ must be a constant overthe domain $\Omega$ and thus, when $f$ is convex, all such solutions are anenergy minimizer of $I(u).$ However, other weak solutions exist such that$f'(\det Du)$ is not constant on $\Omega.$ We also prove some resultsconcerning the homeomorphism solutions, non-quasimonotonicty, radial solutions,and some special properties and questions in the 2-D cases.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答