This website requires JavaScript.

Symmetries of non-linear ODEs: lambda extensions of the Ising correlations

S. BoukraaJ. -M. Maillard
Dec 2022
摘要
This paper provides several illustrations of the numerous remarkableproperties of the lambda-extensions of the two-point correlation functions ofthe Ising model, sheding some light on the non-linear ODEs of the Painlev\'etype. We first show that this concept also exists for the factors of thetwo-point correlation functions focusing, for pedagogical reasons, on twoexamples namely C(0,5) and C(2,5) at $\nu = -k$. We then display, in alearn-by-example approach, some of the puzzling properties and structures ofthese lambda-extensions: for an infinite set of (algebraic) values of $\lambda$ these power series become algebraic functions, and for a finite set of(rational) values of lambda they become D-finite functions, more preciselypolynomials (of different degrees) in the complete elliptic integrals of thefirst and second kind K and E. For generic values of $ \lambda$ these powerseries are not D-finite, they are differentially algebraic. For an infinitenumber of other (rational) values of $ \lambda$ these power series are globallybounded series, thus providing an example of an infinite number of globallybounded differentially algebraic series. Finally, taking the example of aproduct of two diagonal two-point correlation functions, we suggest that manymore families of non-linear ODEs of the Painlev\'e type remain to be discoveredon the two-dimensional Ising model, as well as their structures, and inparticular their associated lambda extensions. The question of their possiblereduction, after complicated transformations, to Okamoto sigma forms ofPainlev\'e VI remains an extremely difficult challenge.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答