This website requires JavaScript.

Ribbon tensor structure on the full representation categories of the singlet vertex algebras

Thomas CreutzigRobert McRaeJinwei Yang
0被引用
0笔记
读论文,拿好礼活动火爆进行中,iPad、蓝牙耳机、拍立得、键盘鼠标套装等你来拿!
摘要原文
We show that the category of finite-length generalized modules for thesinglet vertex algebra $\mathcal{M}(p)$, $p\in\mathbb{Z}_{>1}$, is equal to thecategory $\mathcal{O}_{\mathcal{M}(p)}$ of $C_1$-cofinite$\mathcal{M}(p)$-modules, and that this category admits the vertex algebraicbraided tensor category structure of Huang-Lepowsky-Zhang. Since$\mathcal{O}_{\mathcal{M}(p)}$ includes the uncountably many typical$\mathcal{M}(p)$-modules, which are simple $\mathcal{M}(p)$-module structureson Heisenberg Fock modules, our results substantially extend our previous workon tensor categories of atypical $\mathcal{M}(p)$-modules. We also introduce atensor subcategory $\mathcal{O}_{\mathcal{M}(p)}^T$, graded by an algebraictorus $T$, which has enough projectives and is conjecturally tensor equivalentto the category of finite-dimensional weight modules for the unrolledrestricted quantum group of $\mathfrak{sl}_2$ at a $2p$th root of unity. Wecompute all tensor products involving simple and projective$\mathcal{M}(p)$-modules, and we prove that both tensor categories$\mathcal{O}_{\mathcal{M}(p)}$ and $\mathcal{O}_{\mathcal{M}(p)}^T$ are rigidand thus also ribbon. As an application, we use vertex operator algebraextension theory to show that the representation categories of all finitecyclic orbifolds of the triplet vertex algebras $\mathcal{W}(p)$ arenon-semisimple modular tensor categories, and we confirm a conjecture ofAdamovi\'{c}-Lin-Milas on the classification of simple modules for these finitecyclic orbifolds.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答