This website requires JavaScript.

Random sorting networks: edge limit

Vadim GorinJiaming Xu
Jul 2022
摘要
A sorting network is a shortest path from $12\dots n$ to $n\dots 21$ in theCayley graph of the symmetric group $\mathfrak S_n$ spanned by adjacenttranspositions. The paper computes the edge local limit of the uniformly randomsorting networks as $n\to\infty$. We find the asymptotic distribution of thefirst occurrence of a given swap $(k,k+1)$ and identify it with the law of thesmallest positive eigenvalue of a $2k\times 2k$ aGUE (an aGUE matrix has purelyimaginary Gaussian entries that are independently distributed subject toskew-symmetry). Next, we give two different formal definitions of a spacing --the time distance between the occurrence of a given swap $(k,k+1)$ in auniformly random sorting network. Two definitions lead to two differentexpressions for the asymptotic laws expressed in terms of derivatives ofFredholm determinants.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答