This website requires JavaScript.

Short homology bases for hyperelliptic hyperbolic surfaces

Peter BuserEran MakoverBjoern Muetzel
Jun 2022
摘要
Given a hyperelliptic hyperbolic surface $S$ of genus $g \geq 2$, we findbounds on the lengths of homologically independent loops on $S$. As aconsequence, we show that for any $\lambda \in (0,1)$ there exists a constant$N(\lambda)$ such that every such surface has at least $\lceil \lambda \cdot\frac{2}{3} g \rceil$ homologically independent loops of length at most$N(\lambda)$, extending the result in \cite{mu1} and \cite{bps}. This allows usto extend the constant upper bound obtained in \cite{mu1} on the minimal lengthof non-zero period lattice vectors of hyperelliptic Riemann surfaces to almost$\frac{2}{3} g$ linearly independent vectors.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答