This website requires JavaScript.

A Benchmark for Automatic Medical Consultation System: Frameworks, Tasks and Datasets

Wei ChenZhiwei LiHongyi Fang ...+6 Zhongyu Wei
Apr 2022
摘要
In recent years, interest has arisen in using machine learning to improve theefficiency of automatic medical consultation and enhance patient experience. Inthis paper, we propose two frameworks to support automatic medicalconsultation, namely doctor-patient dialogue understanding and task-orientedinteraction. A new large medical dialogue dataset with multi-level fine-grainedannotations is introduced and five independent tasks are established, includingnamed entity recognition, dialogue act classification, symptom label inference,medical report generation and diagnosis-oriented dialogue policy. We report aset of benchmark results for each task, which shows the usability of thedataset and sets a baseline for future studies.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答