This website requires JavaScript.

Geometry of weighted Lorentz-Finsler manifolds II: A splitting theorem

Yufeng LuEttore MinguzziShin-ichi Ohta
摘要
We show an analogue of the Lorentzian splitting theorem for weightedLorentz-Finsler manifolds: If a weighted Berwald spacetime of nonnegativeweighted Ricci curvature satisfies certain completeness and metrizabilityconditions and includes a timelike straight line, then it necessarily admits aone-dimensional family of isometric translations generated by the gradientvector field of a Busemann function. Moreover, our formulation in terms of the$\epsilon$-range introduced in our previous work enables us to unify thepreviously known splitting theorems for weighted Lorentzian manifolds by Caseand Woolgar-Wylie into a single framework.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答