This website requires JavaScript.

Lattices of t-structures and thick subcategories for discrete cluster categories

Sira GratzAlexandra Zvonareva
arXiv: Representation Theory
Oct 2021
摘要
We classify t-structures and thick subcategories in discrete cluster categories $\mathcal{C}(\mathcal{Z})$ of Dynkin type $A$, and show that the set of all t-structures on $\mathcal{C}(\mathcal{Z})$ is a lattice under inclusion of aisles, with meet given by their intersection. We show that both the lattice of t-structures on $\mathcal{C}(\mathcal{Z})$ obtained in this way and the lattice of thick subcategories of $\mathcal{C}(\mathcal{Z})$ are intimately related to the lattice of non-crossing partitions of type $A$. In particular, the lattice of equivalence classes of non-degenerate t-structures on such a category is isomorphic to the lattice of non-crossing partitions of a finite linearly ordered set.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?