This website requires JavaScript.

Towards a variational Jordan-Lee-Preskill quantum algorithm

Junyu LiuJinzhao SunXiao Yuan
Sep 2021
摘要
Rapid developments of quantum information technology show promising opportunities for simulating quantum field theory in near-term quantum devices. In this work, we formulate the theory of (time-dependent) variational quantum simulation, explicitly designed for quantum simulation of quantum field theory. We develop hybrid quantum-classical algorithms for crucial ingredients in particle scattering experiments, including encoding, state preparation, and time evolution, with several numerical simulations to demonstrate our algorithms in the 1+1 dimensional $\lambda \phi^4$ quantum field theory. These algorithms could be understood as near-term analogs of the Jordan-Lee-Preskill algorithm, the basic algorithm for simulating quantum field theory using universal quantum devices. Our contribution also includes a bosonic version of the Unitary Coupled Cluster ansatz with physical interpretation in quantum field theory, a discussion about the subspace fidelity, a comparison among different bases in the 1+1 dimensional $\lambda \phi^4$ theory, and the spectral crowding in the quantum field theory simulation.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答