This website requires JavaScript.

The wave front set correspondence for dual pairs with one member compact

M. McKeeA. PasqualeTomasz Przebinda
Le Centre pour la Communication Scientifique Directe - HAL - Diderot
Aug 2021
摘要
Let W be a real symplectic space and (G,G') an irreducible dual pair in Sp(W), in the sense of Howe, with G compact. Let $\widetilde{\mathrm{G}}$ be the preimage of G in the metaplectic group $\widetilde{\mathrm{Sp}}(\mathrm{W})$. Given an irreducible unitary representation $\Pi$ of $\widetilde{\mathrm{G}}$ that occurs in the restriction of the Weil representation to $\widetilde{\mathrm{G}}$, let $\Theta_\Pi$ denote its character. We prove that, for the embedding $T$ of $\widetilde{\mathrm{Sp}}(\mathrm{W})$ in the space of tempered distributions on W given by the Weil representation, the distribution $T(\check\Theta_\Pi)$ has an asymptotic limit. This limit is an orbital integral over a nilpotent orbit $\mathcal O_m\subseteq \mathrm{W}$. The closure of the image of $\mathcal O_m$ in $\mathfrak{g}'$ under the moment map is the wave front set of $\Pi'$, the representation of $\widetilde{\mathrm{G}'}$ dual to $\Pi$.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
1
被引用
笔记
问答