This website requires JavaScript.

Crystalline condition for $A_{\mathrm{inf}}$-cohomology and ramification bounds

Pavel Čoupek
arXiv: Number Theory
Aug 2021
摘要
For a prime $p>2$ and a smooth proper $p$-adic formal scheme $X$ over $\mathcal{O}_K$ where $K$ is a $p$-adic field, we study a series of conditions ($\mathrm{Cr}_s$), $s\geq 0$ that partially control the $G_K$-action on the image of the associated Breuil-Kisin prismatic cohomology $\mathrm{H}^i_{\Delta}(X/\mathfrak{S})$ inside the $A_{\mathrm{inf}}$-prismatic cohomology $\mathrm{H}^i_{\Delta}(X_{A_{\mathrm{inf}}}/A_{\mathrm{inf}})$. The condition ($\mathrm{Cr}_0$) is a criterion for a Breuil-Kisin-Fargues $G_K$-module to induce a crystalline representation used by Gee and Liu, and thus leads to a proof of crystallinity of $\mathrm{H}^i_{\text{et}}(X_{\overline{\eta}}, \mathbb{Q}_p)$ that avoids the crystalline comparison. The higher conditions ($\mathrm{Cr}_s$) are used to adapt the strategy of Caruso and Liu in order to establish ramification bounds for the mod $p$ representations $\mathrm{H}^{i}_{\text{et}}(X_{\overline{\eta}}, \mathbb{Z}/p\mathbb{Z}),$ for arbitrary $e$ and $i$, which extend or improve existing bounds in various situations.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?