This website requires JavaScript.

Hybrid Subconvexity Bound for $L\left(\frac{1}{2},\mathrm{Sym}^2 f\otimes\rho\right)$ via the Delta Method.

Wing Hong Leung
arXiv: Number Theory
Mar 2021
摘要
Let $P$ be a prime and $k$ be an even integer. Let $f$ be a full level holomorphic cusp form of weight $k$ and $\rho$ be a primitive level $P$ holomorphic cusp form with arbitrary nebentypus and fixed weight $\kappa$. We prove a hybrid subconvexity bound for $L\left(\frac{1}{2},\mathrm{Sym}^2 f\otimes \rho\right)$ when $P^{\frac{1}{4}+\eta}<k<P^{\frac{21}{17}-\eta}$ for any $0<\eta<\frac{67}{136}$. This extends the range of $P$ and $k$ achieved by Holowinsky, Munshi and Qi. The result is established using a new variant of the delta method.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答