This website requires JavaScript.

On the Cauchy problem of dispersive Burgers type equations

Ayman Rimah Said
Mar 2021
摘要
We study the paralinearised weakly dispersive Burgers type equation: $$\partial_t u+\partial_x [T_u u]-T_{\frac{\partial_x u}{2}}u+\partial_x |D|^{\alpha-1}u=0, \alpha \in ]1,2[,$$ which contains the main non linear worst terms, i.e low-high interaction terms, of the usual weakly dispersive Burgers type equation: $$\partial_t u+u\partial_x u+\partial_x |D|^{\alpha-1}u=0, \alpha \in ]1,2[,$$ with $u_0 \in H^s(\mathbb D)$, where $\mathbb D=\mathbb T \text{ or } \mathbb R$. Through a paradifferential complex Cole-Hopf type gauge transform we introduce for the study of the flow map regularity of Gravity-Capillary equation, we prove a new a priori estimate in $H^s(\mathbb D)$ under the control of $\left\Vert(1+\left\Vert u\right\Vert_{L^\infty_x})\left\Vert u \right\Vert_{W^{2-\alpha,\infty}_x}\right\Vert_{L^1_t}$, improving upon the usual hyperbolic control $\left\Vert \partial_x u\right\Vert_{L^1_tL^\infty_x}$. Thus we eliminate the standard wave breaking scenario in case of blow up as conjectured by J. C. Saut and C. Klein in their numerical study of the dispersive Burgers equation. For $\alpha\in ]2,3[$ we show that we can completely conjugate the paralinearised dispersive Burgers equation to a semi-linear equation of the form: $$\partial_tu+ \partial_x |D|^{\alpha-1}u=R_\infty(u), \alpha \in ]2,3[,$$ where $R_\infty$ is a regularizing operator under the control of $\left\Vert u\right\Vert_{L^\infty_t C^{2-\alpha}_*}$.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?