This website requires JavaScript.

Formalising the Use of the Activation Function in Neural Inference.

Dalton A R Sakthivadivel
arXiv: Neurons and Cognition
Feb 2021
摘要
We investigate how the activation function can be used to describe neural firing in an abstract way, and in turn, why it works well in artificial neural networks. We discuss how a spike in a biological neurone belongs to a particular universality class of phase transitions in statistical physics. We then show that the artificial neurone is, mathematically, a mean field model of biological neural membrane dynamics, which arises from modelling spiking as a phase transition. This allows us to treat selective neural firing in an abstract way, and formalise the role of the activation function in perceptron learning. The resultant statistical physical model allows us to recover the expressions for some known activation functions as various special cases. Along with deriving this model and specifying the analogous neural case, we analyse the phase transition to understand the physics of neural network learning. Together, it is shown that there is not only a biological meaning, but a physical justification, for the emergence and performance of typical activation functions; implications for neural learning and inference are also discussed.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
1
被引用
笔记
问答