This website requires JavaScript.

A singular Moser-Trudinger inequality for mean value zero functions in dimension two

Xiaobao Zhu
Cornell University - arXiv
Aug 2020
摘要
Let $\Omega\subset\mathbb{R}^2$ be a smooth bounded domain with $0\in\partial\Omega$. In this paper, we prove that for any $\beta\in(0,1)$, the supremum $$\sup_{u\in W^{1,2}(\Omega), \int_\Omega u dx=0, \int_\Om|\nabla u|^2dx\leq1}\int_\Omega \frac{e^{2\pi(1-\beta) u^2}}{|x|^{2\beta}}dx$$ is finite and can be attained. This partially generalizes a well-known work of Alice Chang and Paul Yang \cite{CY88} who have obtained the inequality when $\beta=0$.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?