This website requires JavaScript.
DOI: 10.1016/j.jcp.2020.109571

A primal-dual finite element method for first-order transport problems

CAS-3 JCR-Q1 SCIE EI
Chunmei WangJunping Wang
Journal of Computational Physics
Sep 2020
摘要
Abstract This article devises a new numerical method for first-order transport problems by using the primal-dual weak Galerkin (PD-WG) finite element method recently developed in scientific computing. The PD-WG method is based on a variational formulation of the modeling equation for which the differential operator is applied to the test function so that low regularity for the exact solution of the original equation is sufficient for computation. The PD-WG finite element method indeed yields a symmetric system involving both the original equation for the primal variable and its dual for the dual variable (also known as Lagrangian multiplier). For the linear transport problem, it is shown that the PD-WG method offers numerical solutions that conserve mass locally on each element. Optimal order error estimates in various norms are derived for the numerical solutions arising from the PD-WG method with weak regularity assumptions on the modelling equations. A variety of numerical results are presented to demonstrate the accuracy and stability of the new method.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?