This website requires JavaScript.

Gromov hyperbolicity of pseudoconvex finite type domains in $\mathbb{C}^2$

Matteo Fiacchi
arXiv: Complex Variables
Apr 2020
摘要
We prove that every bounded smooth domain of finite d'Angelo type in $\mathbb{C}^2$ endowed with the Kobayashi distance is Gromov hyperbolic and its Gromov boundary is canonically homeomorphic to the Euclidean boundary. We also show that any domain in $\mathbb{C}^2$ endowed with the Kobayashi distance is Gromov hyperbolic provided there exists a sequence of automorphisms that converges to a smooth boundary point of finite D'Angelo type.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?