This website requires JavaScript.

A geometric proof of the Quasi-linearity of the water-waves system.

Ayman Rimah Said
arXiv: Analysis of PDEs
Feb 2020
摘要
In the first part of this paper we prove that the flow associated to the Burgers equation with a non local term of the form $H\langle D \rangle^\alpha u$ fails to be uniformly continuous from bounded sets of $H^s({\mathbb D})$ to $C^0([0,T],H^s({\mathbb D}))$ for $T>0$, $s>\frac{1}{2}+2$, $0\leq \alpha 0$. We generalize this result to a large class of nonlinear transport-dispersive equations in any dimension, that in particular contains the Whitham equation and the paralinearization of the water waves system with and without surface tension. The current result is optimal in the sense that for $\alpha=2$ and ${\mathbb D}={\mathbb T}$ the flow associated to the Benjamin-Ono equation is Lipschitz on function with $0$ mean value $H^s_0$. In the second part of this paper we apply this method to deduce the quasi-linearity of the water waves system, which is the main result of this paper.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?