This website requires JavaScript.

Generalized geometric commutator theory and quantum geometric bracket and its uses

Gen Wang
arXiv: Quantum Physics
Jan 2020
摘要
Inspired by the geometric bracket for the generalized covariant Hamilton system, we abstractly define a generalized geometric commutator $$\left[ a,b \right]={{\left[ a,b \right]}_{cr}}+G\left(s,a,b \right)$$ formally equipped with geomutator $G\left(s, a,b \right)=-G\left(s, b,a \right)$ defined in terms of structural function $s$ related to the structure of spacetime or manifolds itself for revising the classical representation ${{\left[ a,b \right]}_{cr}}=ab-ba$ for any elements $a$ and $b$ of any algebra. We find that geomutator $G\left(s, a,b \right)$ of any manifold which can be automatically chosen by $G\left(s, a,b \right)=a{{\left[ s,b \right]}_{cr}}-b{{\left[ s,a \right]}_{cr}}$. Then we use the generalized geometric commutator to define quantum covariant Poisson bracket that is closely related to the quantum geometric bracket defined by geomutator as a generalization of quantum Poisson bracket all associated with the structural function generated by the manifolds to study the quantum mechanics. We find that the covariant dynamics appears along with the generalized Heisenberg equation as a natural extension of Heisenberg equation and G-dynamics based on the quantum geometric bracket, meanwhile, the geometric canonical commutation relation is naturally induced. As an application of quantum covariant Poisson bracket, we reconsider the canonical commutation relation and the quantization of field to be more complete and covariant, as a consequence, we obtain some useful results.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?