This website requires JavaScript.

Harder-Narasimhan strata and $p$-adic period domains

Xu Shen
arXiv: Algebraic Geometry
Sep 2019
摘要
We revisit the Harder-Narasimhan stratification on a minuscule $p$-adic flag variety, by the theory of modifications of $G$-bundles on the Fargues-Fontaine curve. We compare the Harder-Narasimhan strata with the Newton strata introduced by Caraiani-Scholze. As a consequence, we get further equivalent conditions in terms of $p$-adic Hodge-Tate period domains for fully Hodge-Newton decomposable pairs. Moreover, we generalize these results to arbitrary cocharacters case by considering the associated $B_{dR}^+$-affine Schubert varieties. Applying Hodge-Tate period maps, our constructions give applications to $p$-adic geometry of Shimura varieties and their local analogues.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
2
被引用
笔记
问答