This website requires JavaScript.

Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games

Andris AmbainisMartins Kokainis
arXiv: Quantum Physics
Apr 2017
摘要
We study quantum algorithms on search trees of unknown structure, in a model where the tree can be discovered by local exploration. That is, we are given the root of the tree and access to a black box which, given a vertex $v$, outputs the children of $v$. We construct a quantum algorithm which, given such access to a search tree of depth at most $n$, estimates the size of the tree $T$ within a factor of $1\pm \delta$ in $\tilde{O}(\sqrt{nT})$ steps. More generally, the same algorithm can be used to estimate size of directed acyclic graphs (DAGs) in a similar model. We then show two applications of this result: a) We show how to transform a classical backtracking search algorithm which examines $T$ nodes of a search tree into an $\tilde{O}(\sqrt{T}n^{3/2})$ time quantum algorithm, improving over an earlier quantum backtracking algorithm of Montanaro (arXiv:1509.02374). b) We give a quantum algorithm for evaluating AND-OR formulas in a model where the formula can be discovered by local exploration (modeling position trees in 2-player games). We show that, in this setting, formulas of size $T$ and depth $T^{o(1)}$ can be evaluated in quantum time $O(T^{1/2+o(1)})$. Thus, the quantum speedup is essentially the same as in the case when the formula is known in advance.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
3
被引用
笔记
问答