This website requires JavaScript.

Categorical Chern character and braid groups

Alexei OblomkovLev Rozansky
arXiv: Geometric Topology
Nov 2018
摘要
To a braid $\beta\in Br_n$ we associate a complex of sheaves $S_\beta$ on $Hilb_n(C^2)$ such that the previously defined triply graded link homology of the closure $L(\beta)$ is isomorphic to the homology of $S_\beta$. The construction of $S_\beta$ relies on the Chern functor $CH: MF_n^{st}\to D^{per}_{C^*\times C^*}(Hilb_n(C^2))$ defined in the paper together with its adjoint functor $HC$. The properties of these functors lead us to a conjecture that $HC$ sends $D^{per}_{C^*\times C^*}(Hilb_n(C^2))$ to the Drinfeld center of $MF_n^{st}$. Modulo an explicit parity conjecture for $CH$, we prove a formula for the closure of sufficiently positive elements of the Jucys-Murphy algebra previously conjectured by Gorsky, Negut and Rasmussen.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?