Variational Autoencoder (VAE)
0 订阅
A Variational Autoencoder is a type of likelihood-based generative model. It consists of an encoder, that takes in data $x$ as input and transforms this into a latent representation $z$, and a decoder, that takes a latent representation $z$ and returns a reconstruction $\hat{x}$. Inference is performed via variational inference to approximate the posterior of the model.
相关学科: AEcVAEVariational InferenceRepresentation LearningBeta-VAEGANImage GenerationText GenerationNormalizing FlowsVoice Conversion
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Yoshua Bengio
429868 被引用,1063
篇论文
Ilya Sutskever
165856 被引用,113
篇论文
Xiang Zhang
138753 被引用,2111
篇论文
Stephen M. Smith
128866 被引用,574
篇论文
Trevor Darrell
121211 被引用,688
篇论文
Jitendra Malik
118374 被引用,531
篇论文
Jay Hauser
117962 被引用,2529
篇论文
Bernhard Schölkopf
117502 被引用,1231
篇论文
Li Fei-Fei
116549 被引用,449
篇论文
Jürgen Schmidhuber
101619 被引用,563
篇论文