Transformer
0 订阅
A Transformer is a model architecture that eschews recurrence and instead relies entirely on an attention mechanism to draw global dependencies between input and output. Before Transformers, the dominant sequence transduction models were based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The Transformer also employs an encoder and decoder, but removing recurrence in favor of attention mechanisms allows for significantly more parallelization than methods like RNNs and CNNs.
相关学科: BERTALBERTSystems and ControlHilbert TransformLambertElectricNLPHerbertRoBERTaMachine Translation
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Yoshua Bengio
429868 被引用,1063
篇论文
Georg Kresse
234910 被引用,479
篇论文
Albert-László Barabási
214997 被引用,510
篇论文
Andrew Zisserman
195560 被引用,885
篇论文
Yann LeCun
175383 被引用,366
篇论文
Ilya Sutskever
165856 被引用,113
篇论文
Michael I. Jordan
150356 被引用,1056
篇论文
Peter M. Bentler
145839 被引用,408
篇论文
Herbert A. Simon
145136 被引用,873
篇论文
Terrence J. Sejnowski
134448 被引用,931
篇论文