Transfer Learning

Transfer learning is a methodology where weights from a model trained on one task are taken and either used (a) to construct a fixed feature extractor, (b) as weight initialization and/or fine-tuning. Source: [Subodh Malgonde](https://medium.com/@subodh.malgonde/transfer-learning-using-tensorflow-52a4f6bcde3e)
相关学科: VGG-16AlexNetConvolutionDomain AdaptationImage ClassificationData AugmentationResNetBERTInception-v3VGG

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Yoshua Bengio

429868 被引用,1063 篇论文

Gad Getz

267082 被引用,634 篇论文

Kaiming He

202871 被引用,125 篇论文

Andrew Zisserman

195560 被引用,885 篇论文

Jian Sun

179895 被引用,332 篇论文

Ross Girshick

150810 被引用,165 篇论文

Michael I. Jordan

150356 被引用,1056 篇论文

Xiang Zhang

138753 被引用,2111 篇论文

Vivek Sharma

129779 被引用,3689 篇论文

Manolis Kellis

125613 被引用,450 篇论文