Transfer Learning
0 订阅
Transfer learning is a methodology where weights from a model trained on one task are taken and either used (a) to construct a fixed feature extractor, (b) as weight initialization and/or fine-tuning. Source: [Subodh Malgonde](https://medium.com/@subodh.malgonde/transfer-learning-using-tensorflow-52a4f6bcde3e)
相关学科: VGG-16AlexNetConvolutionDomain AdaptationImage ClassificationData AugmentationResNetBERTInception-v3VGG
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Yoshua Bengio
429868 被引用,1063
篇论文
Gad Getz
267082 被引用,634
篇论文
Kaiming He
202871 被引用,125
篇论文
Andrew Zisserman
195560 被引用,885
篇论文
Jian Sun
179895 被引用,332
篇论文
Ross Girshick
150810 被引用,165
篇论文
Michael I. Jordan
150356 被引用,1056
篇论文
Xiang Zhang
138753 被引用,2111
篇论文
Vivek Sharma
129779 被引用,3689
篇论文
Manolis Kellis
125613 被引用,450
篇论文