Support Vector Machine (SVM)
0 订阅
A Support Vector Machine, or SVM, is a non-parametric supervised learning model. For non-linear classification and regression, they utilise the kernel trick to map inputs to high-dimensional feature spaces. SVMs construct a hyper-plane or set of hyper-planes in a high or infinite dimensional space, which can be used for classification, regression or other tasks. Intuitively, a good separation is achieved by the hyper-plane that has the largest distance to the nearest training data points of any class (so-called functional margin), since in general the larger the margin the lower the generalization error of the classifier. The figure to the right shows the decision function for a linearly separable problem, with three samples on the margin boundaries, called “support vectors”. Source: scikit-learn
相关学科: MLPCALogistic RegressionEEGCVk-NNImage ClassificationLDAFace RecognitionSentiment Analysis
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Yoshua Bengio
429868 被引用,1063
篇论文
Geoffrey E. Hinton
345738 被引用,408
篇论文
Robert Tibshirani
278725 被引用,644
篇论文
David Haussler
210533 被引用,548
篇论文
Andrew Zisserman
195560 被引用,885
篇论文
Yann LeCun
175383 被引用,366
篇论文
Trevor Hastie
173966 被引用,454
篇论文
Hyun-Chul Kim
172231 被引用,4513
篇论文
Ross Girshick
150810 被引用,165
篇论文
Michael I. Jordan
150356 被引用,1056
篇论文