Support Vector Machine (SVM)

A Support Vector Machine, or SVM, is a non-parametric supervised learning model. For non-linear classification and regression, they utilise the kernel trick to map inputs to high-dimensional feature spaces. SVMs construct a hyper-plane or set of hyper-planes in a high or infinite dimensional space, which can be used for classification, regression or other tasks. Intuitively, a good separation is achieved by the hyper-plane that has the largest distance to the nearest training data points of any class (so-called functional margin), since in general the larger the margin the lower the generalization error of the classifier. The figure to the right shows the decision function for a linearly separable problem, with three samples on the margin boundaries, called “support vectors”. Source: scikit-learn
相关学科: MLPCALogistic RegressionEEGCVk-NNImage ClassificationLDAFace RecognitionSentiment Analysis

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Yoshua Bengio

429868 被引用,1063 篇论文

Geoffrey E. Hinton

345738 被引用,408 篇论文

Robert Tibshirani

278725 被引用,644 篇论文

David Haussler

210533 被引用,548 篇论文

Andrew Zisserman

195560 被引用,885 篇论文

Yann LeCun

175383 被引用,366 篇论文

Trevor Hastie

173966 被引用,454 篇论文

Hyun-Chul Kim

172231 被引用,4513 篇论文

Ross Girshick

150810 被引用,165 篇论文

Michael I. Jordan

150356 被引用,1056 篇论文