RMSProp
0 订阅
RMSProp is an unpublished adaptive learning rate optimizer proposed by Geoff Hinton. The motivation is that the magnitude of gradients can differ for different weights, and can change during learning, making it hard to choose a single global learning rate. RMSProp tackles this by keeping a moving average of the squared gradient and adjusting the weight updates by this magnitude. The gradient updates are performed as:$$E\left[g^{2}\right]_{t} = \gamma E\left[g^{2}\right]_{t-1} + \left(1 - \gamma\right) g^{2}_{t}$$$$\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{E\left[g^{2}\right]_{t} + \epsilon}}g_{t}$$Hinton suggests $\gamma=0.9$, with a good default for $\eta$ as $0.001$.Image: Alec Radford
相关学科: AdaGradAdaDeltaAdaMaxNADAMAMSGradSGDAdaBoundAdamAdamWSGD with Momentum
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Yoshua Bengio
429868 被引用,1063
篇论文
Jiawei Han
121361 被引用,1269
篇论文
Léon Bottou
98650 被引用,174
篇论文
Richard Socher
81897 被引用,249
篇论文
Francisco Herrera
79311 被引用,1072
篇论文
Quoc V. Le
73373 被引用,205
篇论文
Richard S. Sutton
61078 被引用,239
篇论文
Hua Wang
43448 被引用,637
篇论文
Noam Shazeer
37095 被引用,61
篇论文
Wei Liu
35988 被引用,1482
篇论文