Question Answering
0 订阅
Question Answering is the task of answering questions (typically reading comprehension questions), but abstaining when presented with a question that cannot be answered based on the provided context. Question answering can be segmented into domain-specific tasks like community question answering and knowledge-base question answering. Popular benchmark datasets for evaluation question answering systems include [SQuAD](/dataset/squad), [HotPotQA](/dataset/hotpotqa), [bAbI](/dataset/babi-1), [TriviaQA](/dataset/triviaqa), [WikiQA](/dataset/wikiqa), and many others. Models for question answering are typically evaluated on metrics like EM and F1. Some recent top performing models are T5 and XLNet. Source: [SQuAD](https://rajpurkar.github.io/mlx/qa-and-squad/) )
相关学科: BERTKnowledge GraphsNERMachine TranslationPassage RetrievalReading ComprehensionAnswer SelectionText SummarizationRelation ExtractionOpen-Domain Question Answering
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Yoshua Bengio
429868 被引用,1063
篇论文
Yi Chen
267689 被引用,4684
篇论文
Ilya Sutskever
165856 被引用,113
篇论文
Ross Girshick
150810 被引用,165
篇论文
Michael I. Jordan
150356 被引用,1056
篇论文
Lotfi A. Zadeh
128623 被引用,362
篇论文
Christopher D. Manning
123173 被引用,515
篇论文
Jiawei Han
121361 被引用,1269
篇论文
Trevor Darrell
121211 被引用,688
篇论文
Jitendra Malik
118374 被引用,531
篇论文