Principal Components Analysis (PCA)

Principle Components Analysis (PCA) is an unsupervised method primary used for dimensionality reduction within machine learning. PCA is calculated via a singular value decomposition (SVD) of the design matrix, or alternatively, by calculating the covariance matrix of the data and performing eigenvalue decomposition on the covariance matrix. The results of PCA provide a low-dimensional picture of the structure of the data and the leading (uncorrelated) latent factors determining variation in the data.
相关学科: Face RecognitionDimensionality ReductionLDAICAKPCASVMFault DetectionML2DPCACV

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Yoshua Bengio

429868 被引用,1063 篇论文

Robert Tibshirani

278725 被引用,644 篇论文

Jian Sun

179895 被引用,332 篇论文

Yann LeCun

175383 被引用,366 篇论文

Trevor Hastie

173966 被引用,454 篇论文

Michael I. Jordan

150356 被引用,1056 篇论文

Anil K. Jain

148144 被引用,1055 篇论文

John C. Morris

146512 被引用,1902 篇论文

Terrence J. Sejnowski

134448 被引用,931 篇论文

Stephen M. Smith

128866 被引用,574 篇论文