node2vec
0 订阅
node2vec is a framework for learning graph embeddings for nodes in graphs. Node2vec maximizes a likelihood objective over mappings which preserve neighbourhood distances in higher dimensional spaces. From an algorithm design perspective, node2vec exploits the freedom to define neighbourhoods for nodes and provide an explanation for the effect of the choice of neighborhood on the learned representations. For each node, node2vec simulates biased random walks based on an efficient network-aware search strategy and the nodes appearing in the random walk define neighbourhoods. The search strategy accounts for the relative influence nodes exert in a network. It also generalizes prior work alluding to naive search strategies by providing flexibility in exploring neighborhoods.
相关学科: DeepWalkNetwork EmbeddingGraph EmbeddingGraphSAGELink PredictionNode ClassificationGraph Representation LearningStruc2vecRepresentation LearningGraph Sampling
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Hongfang Liu
139850 被引用,2666
篇论文
Kevin Murphy
83646 被引用,800
篇论文
Jure Leskovec
68322 被引用,500
篇论文
Christos Faloutsos
63796 被引用,819
篇论文
Dawn Song
47685 被引用,470
篇论文
Nitesh V. Chawla
32376 被引用,407
篇论文
Tat-Seng Chua
30731 被引用,750
篇论文
Michael Backes
21671 被引用,909
篇论文
Yong Yu
21402 被引用,545
篇论文
Peter N. Robinson
21212 被引用,416
篇论文