Network Embedding
0 订阅
Network Embedding is a collective term for techniques for mapping graph nodes to vectors of real numbers in a multidimensional space. To be useful, a good embedding should preserve the structure of the graph. The vectors can then be used as input to various network and graph analysis tasks, such as link prediction Source: [Tutorial on NLP-Inspired Network Embedding ](https://arxiv.org/abs/1910.07212)
相关学科: Link PredictionNode Classificationnode2vecDeepWalkRepresentation LearningGraph EmbeddingCommunity DetectionNode ClusteringMulti-Label ClassificationGraph Representation Learning
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Jie Zhang
193659 被引用,5433
篇论文
Anil K. Jain
148144 被引用,1055
篇论文
Jiawei Han
121361 被引用,1269
篇论文
Trevor Darrell
121211 被引用,688
篇论文
Kevin Murphy
83646 被引用,800
篇论文
Guanrong Chen
82207 被引用,1742
篇论文
Thomas S. Huang
80905 被引用,1385
篇论文
Philip S. Yu
79752 被引用,1712
篇论文
Yi Yang
79099 被引用,2623
篇论文
Jun Chen
73728 被引用,2015
篇论文