Network Embedding

Network Embedding is a collective term for techniques for mapping graph nodes to vectors of real numbers in a multidimensional space. To be useful, a good embedding should preserve the structure of the graph. The vectors can then be used as input to various network and graph analysis tasks, such as link prediction Source: [Tutorial on NLP-Inspired Network Embedding ](https://arxiv.org/abs/1910.07212)
相关学科: Link PredictionNode Classificationnode2vecDeepWalkRepresentation LearningGraph EmbeddingCommunity DetectionNode ClusteringMulti-Label ClassificationGraph Representation Learning

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Jie Zhang

193659 被引用,5433 篇论文

Anil K. Jain

148144 被引用,1055 篇论文

Jiawei Han

121361 被引用,1269 篇论文

Trevor Darrell

121211 被引用,688 篇论文

Kevin Murphy

83646 被引用,800 篇论文

Guanrong Chen

82207 被引用,1742 篇论文

Thomas S. Huang

80905 被引用,1385 篇论文

Philip S. Yu

79752 被引用,1712 篇论文

Yi Yang

79099 被引用,2623 篇论文

Jun Chen

73728 被引用,2015 篇论文