Multi-Agent Reinforcement Learning

The target of Multi-agent Reinforcement Learning is to solve complex problems by integrating multiple agents that focus on different sub-tasks. In general, there are two types of multi-agent systems: independent and cooperative systems. Source: [Show, Describe and Conclude: On Exploiting the Structure Information of Chest X-Ray Reports ](https://arxiv.org/abs/2004.12274)
相关学科: MADDPGStarcraft IIStarcraftQ-LearningSMACDQNPPOExperience ReplayA2CSoft Actor Critic

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Michael I. Jordan

150356 被引用,1056 篇论文

Gang Chen

136930 被引用,3692 篇论文

Andrew Y. Ng

114296 被引用,356 篇论文

Stanley Osher

84093 被引用,532 篇论文

Philip S. Yu

79752 被引用,1712 篇论文

Alex Pentland

76365 被引用,870 篇论文

Koray Kavukcuoglu

75986 被引用,106 篇论文

Rob Fergus

74673 被引用,157 篇论文

David Silver

64906 被引用,189 篇论文

Oriol Vinyals

60460 被引用,183 篇论文