Multi-Agent Reinforcement Learning
0 订阅
The target of Multi-agent Reinforcement Learning is to solve complex problems by integrating multiple agents that focus on different sub-tasks. In general, there are two types of multi-agent systems: independent and cooperative systems. Source: [Show, Describe and Conclude: On Exploiting the Structure Information of Chest X-Ray Reports ](https://arxiv.org/abs/2004.12274)
相关学科: MADDPGStarcraft IIStarcraftQ-LearningSMACDQNPPOExperience ReplayA2CSoft Actor Critic
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Michael I. Jordan
150356 被引用,1056
篇论文
Gang Chen
136930 被引用,3692
篇论文
Andrew Y. Ng
114296 被引用,356
篇论文
Stanley Osher
84093 被引用,532
篇论文
Philip S. Yu
79752 被引用,1712
篇论文
Alex Pentland
76365 被引用,870
篇论文
Koray Kavukcuoglu
75986 被引用,106
篇论文
Rob Fergus
74673 被引用,157
篇论文
David Silver
64906 被引用,189
篇论文
Oriol Vinyals
60460 被引用,183
篇论文