Machine Translation

Machine translation is the task of translating a sentence in a source language to a different target language.Approaches for machine translation can range from rule-based to statistical to neural-based. More recently, encoder-decoder attention-based architectures like BERT have attained major improvements in machine translation. One of the most popular datasets used to benchmark machine translation systems is the WMT family of datasets. Some of the most commonly used evaluation metrics for machine translation systems include BLEU, METEOR, NIST, and others. Source: [Google seq2seq](https://github.com/google/seq2seq) )
相关学科: TranslationWord AlignmentQuestion AnsweringWord Sense DisambiguationNLPSpeech RecognitionDomain AdaptationTransliterationPoSWord Embeddings

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Yoshua Bengio

429868 被引用,1063 篇论文

Geoffrey E. Hinton

345738 被引用,408 篇论文

Ilya Sutskever

165856 被引用,113 篇论文

Michael I. Jordan

150356 被引用,1056 篇论文

Christopher D. Manning

123173 被引用,515 篇论文

Jiawei Han

121361 被引用,1269 篇论文

Andrew Y. Ng

114296 被引用,356 篇论文

Jeffrey Dean

113261 被引用,113 篇论文

Karen Simonyan

94318 被引用,102 篇论文

Ian Goodfellow

92697 被引用,135 篇论文