Local Prior Matching (LPM)
0 订阅
Local Prior Matching is a semi-supervised objective for speech recognition that distills knowledge from a strong prior (e.g. a language model) to provide learning signal to a discriminative model trained on unlabeled speech. The LPM objective minimizes the cross entropy between the local prior and the model distribution, and is minimized when $q_{y\mid{x}} = \bar{p}_{y\mid{x}}$. Intuitively, LPM encourages the ASR model to assign posterior probabilities proportional to the linguistic probabilities of the proposed hypotheses.
相关学科: Face Image RetrievalGraph SelectionLearning with noisy labelsTable SearchFPMSequential Pattern MiningTerm ExtractionMusic CompositionSCNModel Discovery
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Jie Zhang
193659 被引用,5433
篇论文
Niels Birbaumer
88695 被引用,932
篇论文
Wil M. P. van der Aalst
35971 被引用,756
篇论文
Stan Z. Li
34357 被引用,557
篇论文
Michael L. Littman
29776 被引用,342
篇论文
Lawrence Carin
25274 被引用,999
篇论文
Tom Walsh
21672 被引用,250
篇论文
Marlon Dumas
20819 被引用,492
篇论文
Kathleen M. Carley
19421 被引用,649
篇论文
Jonathan S. Turner
16668 被引用,215
篇论文