Linear Regression

Linear Regression is a method for modelling a relationship between a dependent variable and independent variables. These models can be fit with numerous approaches. The most common is least squares, where we minimize the mean square error between the predicted values $\hat{y} = \textbf{X}\hat{\beta}$ and actual values $y$: $\left(y-\textbf{X}\beta\right)^{2}$.We can also define the problem in probabilistic terms as a generalized linear model (GLM) where the pdf is a Gaussian distribution, and then perform maximum likelihood estimation to estimate $\hat{\beta}$.Image Source: Wikipedia
相关学科: Variable SelectionMLModel SelectionTime SeriesSVMLogistic RegressionGaussian ProcessLoad ForecastingPCAImputation

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Yoshua Bengio

429868 被引用,1063 篇论文

Geoffrey E. Hinton

345738 被引用,408 篇论文

Robert Tibshirani

278725 被引用,644 篇论文

Ralph B. D'Agostino

225766 被引用,1426 篇论文

Donald B. Rubin

207461 被引用,567 篇论文

Trevor Hastie

173966 被引用,454 篇论文

Nicholas J. Wareham

172875 被引用,1816 篇论文

Nan M. Laird

157185 被引用,366 篇论文

John C. Morris

146512 被引用,1902 篇论文

Vladimir Vapnik

134337 被引用,136 篇论文