Linear Regression
0 订阅
Linear Regression is a method for modelling a relationship between a dependent variable and independent variables. These models can be fit with numerous approaches. The most common is least squares, where we minimize the mean square error between the predicted values $\hat{y} = \textbf{X}\hat{\beta}$ and actual values $y$: $\left(y-\textbf{X}\beta\right)^{2}$.We can also define the problem in probabilistic terms as a generalized linear model (GLM) where the pdf is a Gaussian distribution, and then perform maximum likelihood estimation to estimate $\hat{\beta}$.Image Source: Wikipedia
相关学科: Variable SelectionMLModel SelectionTime SeriesSVMLogistic RegressionGaussian ProcessLoad ForecastingPCAImputation
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Yoshua Bengio
429868 被引用,1063
篇论文
Geoffrey E. Hinton
345738 被引用,408
篇论文
Robert Tibshirani
278725 被引用,644
篇论文
Ralph B. D'Agostino
225766 被引用,1426
篇论文
Donald B. Rubin
207461 被引用,567
篇论文
Trevor Hastie
173966 被引用,454
篇论文
Nicholas J. Wareham
172875 被引用,1816
篇论文
Nan M. Laird
157185 被引用,366
篇论文
John C. Morris
146512 被引用,1902
篇论文
Vladimir Vapnik
134337 被引用,136
篇论文