Local Interpretable Model-Agnostic Explanations (LIME)

LIME, or Local Interpretable Model-Agnostic Explanations, is an algorithm that can explain the predictions of any classifier or regressor in a faithful way, by approximating it locally with an interpretable model. It modifies a single data sample by tweaking the feature values and observes the resulting impact on the output. It performs the role of an 'explainer' to explain predictions from each data sample. The output of LIME is a set of explanations representing the contribution of each feature to a prediction for a single sample, which is a form of local interpretability.Interpretable models in LIME can be, for instance, linear regression or decision trees, which are trained on small perturbations (e.g. adding noise, removing words, hiding parts of the image) of the original model to provide a good local approximation.
相关学科: SHAPExplainable Artificial IntelligenceFeature ImportanceInterpretabilityInterpretable Machine LearningLow-Light Image EnhancementCounterfactual ExplanationSuperpixelsLink DiscoveryText Classification

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Ben Zhong Tang

173765 被引用,2291 篇论文

Hyun-Chul Kim

172231 被引用,4513 篇论文

Christian Szegedy

102646 被引用,57 篇论文

Jimmy Ba

83691 被引用,93 篇论文

Yu Huang

83395 被引用,1548 篇论文

Philip S. Yu

79752 被引用,1712 篇论文

Michael Randolph Garey

72916 被引用,105 篇论文

Ted Belytschko

72264 被引用,608 篇论文

David S. Johnson

68809 被引用,193 篇论文

Fei Wang

50622 被引用,1973 篇论文