Interpretable Machine Learning
0 订阅
The goal of Interpretable Machine Learning is to allow oversight and understanding of machine-learned decisions. Much of the work in Interpretable Machine Learning has come in the form of devising methods to better explain the predictions of machine learning models. Source: [Assessing the Local Interpretability of Machine Learning Models ](https://arxiv.org/abs/1902.03501)
相关学科: SHAPFeature ImportanceInterpretabilityExplainable Artificial IntelligenceLIMECounterfactual ExplanationCounterfactual ReasoningKnowledge Graph EmbeddingsData PoisoningAdditive models
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Geoffrey E. Hinton
345738 被引用,408
篇论文
Chris Sander
204271 被引用,778
篇论文
Klaus-Robert Müller
83524 被引用,798
篇论文
Alessandro Vespignani
67484 被引用,490
篇论文
David B. Matchar
54326 被引用,600
篇论文
Stefano de Gironcoli
46703 被引用,172
篇论文
Carlos Guestrin
40752 被引用,225
篇论文
Janis M. Taube
40088 被引用,240
篇论文
Mani Srivastava
37034 被引用,623
篇论文
Charu C. Aggarwal
34679 被引用,577
篇论文