Image Classification

Image Classification is a fundamental task that attempts to comprehend an entire image as a whole. The goal is to classify the image by assigning it to a specific label. Typically, Image Classification refers to images in which only one object appears and is analyzed. In contrast, object detection involves both classification and localization tasks, and is used to analyze more realistic cases in which multiple objects may exist in an image. Source: [Metamorphic Testing for Object Detection Systems ](https://arxiv.org/abs/1912.12162)
相关学科: ConvolutionObject DetectionTransfer LearningResNetSemantic SegmentationData AugmentationSVMAlexNetVGG-16CV

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Yoshua Bengio

429868 被引用,1063 篇论文

Geoffrey E. Hinton

345738 被引用,408 篇论文

Kaiming He

202871 被引用,125 篇论文

Andrew Zisserman

195560 被引用,885 篇论文

Jian Sun

179895 被引用,332 篇论文

Yann LeCun

175383 被引用,366 篇论文

Ross Girshick

150810 被引用,165 篇论文

Michael I. Jordan

150356 被引用,1056 篇论文

Anil K. Jain

148144 被引用,1055 篇论文

Vladimir Vapnik

134337 被引用,136 篇论文