Graph Convolutional Network
0 订阅
A Graph Convolutional Network, or GCN, is an approach for semi-supervised learning on graph-structured data. It is based on an efficient variant of convolutional neural networks which operate directly on graphs. The choice of convolutional architecture is motivated via a localized first-order approximation of spectral graph convolutions. The model scales linearly in the number of graph edges and learns hidden layer representations that encode both local graph structure and features of nodes.
相关学科: GCNNode ClassificationSkeleton Based Action RecognitionAction RecognitionGraph LearningLink PredictionGraph ClassificationHyperspectral Image ClassificationKnowledge GraphsConvolution
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Yoshua Bengio
429868 被引用,1063
篇论文
Rob Knight
318987 被引用,1171
篇论文
Hongfang Liu
139850 被引用,2666
篇论文
Paul M. Thompson
130061 被引用,2679
篇论文
Ramnik J. Xavier
124984 被引用,683
篇论文
Jian Yang
96983 被引用,1935
篇论文
Vince D. Calhoun
80051 被引用,1324
篇论文
Philip S. Yu
79752 被引用,1712
篇论文
Chao Zhang
79014 被引用,3257
篇论文
Serge Belongie
69826 被引用,330
篇论文