Graph Convolutional Network (GCN)
0 订阅
A Graph Convolutional Network, or GCN, is an approach for semi-supervised learning on graph-structured data. It is based on an efficient variant of convolutional neural networks which operate directly on graphs. The choice of convolutional architecture is motivated via a localized first-order approximation of spectral graph convolutions. The model scales linearly in the number of graph edges and learns hidden layer representations that encode both local graph structure and features of nodes. Introduced by Kipf et al. in Semi-Supervised Classification with Graph Convolutional Networks
相关学科: Graph Convolutional NetworkNode ClassificationSkeleton Based Action RecognitionGATGraphSAGEGraph LearningGraph ClassificationGraph AttentionLink PredictionGraph Representation Learning
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Rob Knight
318987 被引用,1171
篇论文
Albert-László Barabási
214997 被引用,510
篇论文
Jian Sun
179895 被引用,332
篇论文
Paul M. Thompson
130061 被引用,2679
篇论文
Ramnik J. Xavier
124984 被引用,683
篇论文
Jiawei Han
121361 被引用,1269
篇论文
Myrna M. Weissman
102201 被引用,846
篇论文
Jürgen Schmidhuber
101619 被引用,563
篇论文
Jian Yang
96983 被引用,1935
篇论文
Neil Gehrels
93243 被引用,992
篇论文