Gaussian Process
0 订阅
Gaussian Processes are non-parametric models for approximating functions. They rely upon a measure of similarity between points (the kernel function) to predict the value for an unseen point from training data. The models are fully probabilistic so uncertainty bounds are baked in with the model. Source: Gaussian Processes for Machine Learning, C. E. Rasmussen & C. K. I. Williams
相关学科: GPRBayesian InferenceVariational InferenceActive LearningMLGPSTime SeriesDimensionality ReductionModel SelectionLinear Regression
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Yoshua Bengio
429868 被引用,1063
篇论文
Geoffrey E. Hinton
345738 被引用,408
篇论文
Christopher J L Murray
271768 被引用,835
篇论文
Alan D. Lopez
253601 被引用,928
篇论文
Karl J. Friston
198421 被引用,1357
篇论文
Andrew Zisserman
195560 被引用,885
篇论文
Patrick O. Brown
183000 被引用,776
篇论文
Jens K. Nørskov
174050 被引用,778
篇论文
Joshua A. Frieman
165604 被引用,764
篇论文
Tim D. Spector
151914 被引用,1842
篇论文