Gaussian Process

Gaussian Processes are non-parametric models for approximating functions. They rely upon a measure of similarity between points (the kernel function) to predict the value for an unseen point from training data. The models are fully probabilistic so uncertainty bounds are baked in with the model. Source: Gaussian Processes for Machine Learning, C. E. Rasmussen & C. K. I. Williams
相关学科: GPRBayesian InferenceVariational InferenceActive LearningMLGPSTime SeriesDimensionality ReductionModel SelectionLinear Regression

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Yoshua Bengio

429868 被引用,1063 篇论文

Geoffrey E. Hinton

345738 被引用,408 篇论文

Christopher J L Murray

271768 被引用,835 篇论文

Alan D. Lopez

253601 被引用,928 篇论文

Karl J. Friston

198421 被引用,1357 篇论文

Andrew Zisserman

195560 被引用,885 篇论文

Patrick O. Brown

183000 被引用,776 篇论文

Jens K. Nørskov

174050 被引用,778 篇论文

Joshua A. Frieman

165604 被引用,764 篇论文

Tim D. Spector

151914 被引用,1842 篇论文