Generative Adversarial Network (GAN)

A GAN, or Generative Adversarial Network, is a generative model that simultaneously trains two models: a generative model $G$ that captures the data distribution, and a discriminative model $D$ that estimates the probability that a sample came from the training data rather than $G$.The training procedure for $G$ is to maximize the probability of $D$ making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions $G$ and $D$, a unique solution exists, with $G$ recovering the training data distribution and $D$ equal to $\frac{1}{2}$everywhere. In the case where $G$ and $D$ are defined by multilayer perceptrons, the entire system can be trained with backpropagation.
相关学科: Image GenerationData AugmentationImage-to-Image TranslationCganSuper-ResolutionWGANConvolutionSSIMCycleGANVAE

学科讨论

讨论Icon

暂无讨论内容,你可以

推荐文献

按被引用数

学科管理组

暂无学科课代表,你可以申请成为课代表

重要学者

Yoshua Bengio

429868 被引用,1063 篇论文

Yi Chen

267689 被引用,4684 篇论文

Michael I. Jordan

150356 被引用,1056 篇论文

Trevor Darrell

121211 被引用,688 篇论文

Bernhard Schölkopf

117502 被引用,1231 篇论文

Li Fei-Fei

116549 被引用,449 篇论文

Mingshui Chen

106993 被引用,1861 篇论文

Léon Bottou

98650 被引用,174 篇论文

Jian Yang

96983 被引用,1935 篇论文

Karen Simonyan

94318 被引用,102 篇论文