Generative Adversarial Network (GAN)
0 订阅
A GAN, or Generative Adversarial Network, is a generative model that simultaneously trains two models: a generative model $G$ that captures the data distribution, and a discriminative model $D$ that estimates the probability that a sample came from the training data rather than $G$.The training procedure for $G$ is to maximize the probability of $D$ making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions $G$ and $D$, a unique solution exists, with $G$ recovering the training data distribution and $D$ equal to $\frac{1}{2}$everywhere. In the case where $G$ and $D$ are defined by multilayer perceptrons, the entire system can be trained with backpropagation.
相关学科: Image GenerationData AugmentationImage-to-Image TranslationCganSuper-ResolutionWGANConvolutionSSIMCycleGANVAE
学科讨论

暂无讨论内容,你可以
推荐文献
按被引用数
学科管理组
暂无学科课代表,你可以申请成为课代表
重要学者
Yoshua Bengio
429868 被引用,1063
篇论文
Yi Chen
267689 被引用,4684
篇论文
Michael I. Jordan
150356 被引用,1056
篇论文
Trevor Darrell
121211 被引用,688
篇论文
Bernhard Schölkopf
117502 被引用,1231
篇论文
Li Fei-Fei
116549 被引用,449
篇论文
Mingshui Chen
106993 被引用,1861
篇论文
Léon Bottou
98650 被引用,174
篇论文
Jian Yang
96983 被引用,1935
篇论文
Karen Simonyan
94318 被引用,102
篇论文